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Purpose: To develop a method to estimate the mean fractional volume of fat (νfat) within a region of
interest (ROI) of a tissue sample for wide-angle x-ray scatter (WAXS) applications. A scatter signal
from the ROI was obtained and use of νfat in a WAXS fat subtraction model provided a way to estimate
the differential linear scattering coefficient µs of the remaining fatless tissue.
Methods: The efficacy of the method was tested using animal tissue from a local butcher shop.
Formalin fixed samples, 5 mm in diameter 4 mm thick, were prepared. The two main tissue types were
fat and meat (fibrous). Pure as well as composite samples consisting of a mixture of the two tissue
types were analyzed. For the latter samples, νfat for the tissue columns of interest were extracted from
corresponding pixels in CCD digital x-ray images using a calibration curve. The means νfat were then
calculated for use in a WAXS fat subtraction model. For the WAXS measurements, the samples were
interrogated with a 2.7 mm diameter 50 kV beam and the 6◦ scattered photons were detected with
a CdTe detector subtending a solid angle of 7.75×10−5 sr. Using the scatter spectrum, an estimate
of the incident spectrum, and a scatter model, µs was determined for the tissue in the ROI. For the
composite samples, a WAXS fat subtraction model was used to estimate the µs of the fibrous tissue
in the ROI. This signal was compared to µs of fibrous tissue obtained using a pure fibrous sample.
Results: For chicken and beef composites, νfat= 0.33±0.05 and 0.32±0.05, respectively. The
subtractions of these fat components from the WAXS composite signals provided estimates of µs

for chicken and beef fibrous tissue. The differences between the estimates and µs of fibrous obtained
with a pure sample were calculated as a function of the momentum transfer x. A t-test showed that
the mean of the differences did not vary from zero in a statistically significant way thereby validating
the methods.
Conclusions: The methodology to estimate νfat in a ROI of a tissue sample via CCD x-ray imaging
was quantitatively accurate. The WAXS fat subtraction model allowed µs of fibrous tissue to be ob-
tained from a ROI which had some fat. The fat estimation method coupled with the WAXS models can
be used to compare µs coefficients of fibroglandular and cancerous breast tissue. C 2014 American
Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4897384]

Key words: fat estimation, breast biopsies, CCD x-ray imaging, WAXS, CdTe, differential linear
scattering coefficients, WAXS fat subtraction model

1. INTRODUCTION

The use of wide-angle x-ray scatter (WAXS) signals to diag-
nose cancer in breast biopsies is being investigated by various
researchers.1–15 The scatter signals are a function of the mo-
mentum transfer argument x = sin(θ/2)/λ which combines
their dependence on scatter angle θ and photon wavelength λ.

Farquharson et al.1 recently reported results of combining
x-ray fluorescence (XRF) and energy dispersive x-ray diffrac-
tion (EDXRD) for the classification of breast specimens. The
former provided quantification of concentrations of K, Ca,
Zn, Fe, Cu, Br, and Rb, whereas the latter provided their

coherent scattering properties. The data were incorporated
into a multivariate model [i.e., principal component analysis
and soft independent modeling of class analogies (SIMCA)].8

Their findings were mapped to histological analysis of the
samples. They suggest that their model can potentially be
used to classify a small tissue sample as benign or malignant.

Elshemey et al.3 measured the scatter signals at θ = 4◦–70◦

(∆θ = 0.5◦) of 36 breast tissue samples using an x-ray diffrac-
tometer consisting of a Cu anode x-ray tube operating at 40 kV.
The Cu Kα = 8.047 keV scattered photons were selected by
a graphite monochromator and detected by a sodium iodide
crystal. Scatter profiles were peak normalized and it was

113501-1 Med. Phys. 41 (11), November 2014 0094-2405/2014/41(11)/113501/8/$30.00 © 2014 Am. Assoc. Phys. Med. 113501-1

http://dx.doi.org/10.1118/1.4897384
http://dx.doi.org/10.1118/1.4897384
http://dx.doi.org/10.1118/1.4897384
http://dx.doi.org/10.1118/1.4897384
http://dx.doi.org/10.1118/1.4897384
http://dx.doi.org/10.1118/1.4897384
http://dx.doi.org/10.1118/1.4897384
http://dx.doi.org/10.1118/1.4897384
http://dx.doi.org/10.1118/1.4897384
http://dx.doi.org/10.1118/1.4897384
http://crossmark.crossref.org/dialog/?doi=10.1118/1.4897384&domain=pdf&date_stamp=2014-10-13


113501-2 Tang et al.: Fat estimation in biopsies for WAXS applications 113501-2

concluded that characterization parameters (e.g., full width
half maximum (FWHM), ratios of scatter intensities, and areas
under the curve) could be useful for diagnostic evaluations. For
example, FWHM mean values of 0.50±0.16 nm−1 and 1.18
±0.28 nm−1 were found for, respectively, healthy and malig-
nant tissue.

Changizi et al.5 measured diffraction profiles of 131 breast
biopsies using a HPGe detector positioned at θ = 6◦. A tung-
sten target x-ray tube operating at 55 kV was used. Differ-
ences in the peak positions were observed for normal, carci-
noma, and benign tissue. The peak heights found for carci-
noma were located at 1.55±0.04 nm−1, 1.73±0.06 nm−1,
and 1.85±0.05 nm−1, while adipose/fibroglandular mixtures
yielded peaks at 1.15±0.06 nm−1 and 1.4±0.05 nm−1. The
differences between fibrocystic changes (e.g., nonmalignant
breast lumps) and carcinoma were insignificant and the
different types of carcinomas could not be distinguished (e.g.,
ductal carcinoma and lobular carcinoma).

Oliveira et al.6 investigated the use of a powder diffractom-
eter consisting of an x-ray tube with a Cu anode, a graphite
monochromator selecting Kα = 8.047 keV photons, and a so-
dium iodide detector. Scatter signals from θ = 5◦–150◦ [∆θ
= (1/3)◦] were measured for 40 samples initially identified
with histology. The scatter profiles for water were measured
and agreed with measurements by Morin.16 Normal glandular
tissue yielded a peak at 1.7 nm−1. The diffraction patterns for
glandular, benign, and malignant tissue showed similar shapes
but differed in peak heights. A discriminant analysis was used
to classify biopsies. A sensitivity of 95.6% and a specificity
of 82.3% were found for differentiating normal fibroglandular
and malignant tissue.

Ryan and Farquharson8 used an energy dispersive x-ray
system (W anode tube operating at 80 kV with a HPGe de-
tector) to analyze 39 breast tissue samples. The samples were
classified by histology as adipose, fibroadenoma, fibrocystic
change, malignant, and normal fibrous tissue. The electron
densities were estimated from Compton scatter measure-
ments (θ = 30◦, 57.97 keV Kα2 radiation). The x-ray diffrac-
tion signatures were acquired at θ = 7.5◦ with a measurement
time of 1 h for each sample. These data were used to classify
the tissue via SIMCA methods with a sensitivity of 54% and
specificity of 100%.

Clinical WAXS applications for diagnosing breast cancer
in biopsies have not yet transpired. The three main breast
tissue types are fat, fibroglandular (fibrous), and cancer. Fat
has a scatter peak signal at x = 1.1 nm−1 because of triacyl-
glycerol molecules.17 To compare WAXS from a malignant
cancer versus fibroglandular tissue is difficult, since fat is
likely to be present in a biopsy. In this work, a method to esti-
mate the mean fractional volume of fat νfat within a region of
interest (ROI) of an animal tissue sample for WAXS analysis
was the focus.

Different methods have been used to assess the fibroglan-
dular/fat content (breast density) in vivo since the knowledge
provides a way to estimate the risks of developing cancer.18–23

As Yaffe24 summarizes, different qualitative and quantitative

methods have been applied to evaluate breast density. Exam-
ples of visual classification methods are the Wolfe density cate-
gories18 and the Breast Imaging Reporting and Data System
(BI-RADS).25 More reliable computer-aided breast density
measurements for quantitative analysis were developed.26 The
gray level thresholding method is a 2D technique where either
a radiologist or a fully automated computer-assisted segmen-
tation software chooses the threshold level to categorize the
dense versus nondense regions. 3D x-ray breast imaging tech-
niques may prove to be more useful since they overcome the
limitations of overlapping structures. Dedicated breast CT
(Refs. 27 and 28) and breast tomosynthesis29 are two methods
that are currently under development.

Although the task to estimate breast density in a breast
biopsy is simpler, it is not trivial. Histology analysis of thin
(e.g., 5 µm) sections of tissue can be used to estimate the
composition of samples (e.g., Ref. 14). There is, however, no
guarantee that the composition of the chosen slice(s) is the
same throughout the sample. Geraki et al.30 used XRF and
EDXRD for the quantification of elemental concentrations
in breast tissue. They found elevated concentrations of iron,
copper, zinc, and potassium in malignant specimens.

Because the attenuation coefficients (µ) of fat are signif-
icantly different from those of cancer and fibroglandular tis-
sue,31 an x-ray imaging method was used to estimate νfat in
the volume of tissue (i.e., ROI) that was interrogated dur-
ing the WAXS measurement. A ROI with animal fat and
meat (fibrous, fib) tissue was used in this work. A WAXS fat
subtraction model, validated in a previous work,32 was used
to estimate the differential linear scattering coefficient µs of
the nonfat (fib) tissue. Refer to Ref. 32 for detailed descrip-
tions of the WAXS system and validations of the WAXS
models for acquisitions of µs. Section 2 briefly describes the
WAXS component.

2. WAXS COMPONENT

Consider the interrogation of a 5 mm diameter d = 4 mm
thick breast biopsy with a 2.7 mm diameter 50 kV beam. The
ROI consists of a cylindrical volume defined by the intersec-
tion of the beam and sample. Let the mean fractional volumes
of fat and fib tissue within the ROI be νfat and νfib, respec-
tively. The scatter coefficient of this mixture of tissue can be
approximated by32

µs(x)= Ns(E, θ)
N0(E)Ωdet

×
µ(E)(1− 1

cos θ )eµ(E) d
cos θ

[1−e−µ(E)d(1− 1
cos θ )]

, (1)

where Ns(E, θ) is the scatter spectrum captured with a CdTe
energy dispersive x-ray detector positioned at angle θ = 6◦

subtending Ωdet= 7.75×10−5 sr, N0(E) is the incident spec-
trum, and µ= νfatµfat+ νfibµfib. From this measurement, the µs

of fib can be approximated by

µsc(fib)= �µs− νfatµs(fat)�/νfib, (2)

where the subscript “c” denotes that the µs was obtained via
subtraction (correction) of fat and µs(fat) is the scatter coef-
ficient for a pure sample of fat. The νfat within the ROI of
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composite samples was estimated via the technique described
in Sec. 3.B.

µs for the mixture was compared to µ

s = νfatµs(fat)

+ νfibµs(fib), where µs(fib) is the scatter coefficient for a pure
fib sample. An agreement between µsc(fib) and µs(fib) would
validate the fat subtraction protocol.

3. METHOD

3.A. Animal tissue

Chicken and beef tissue were acquired from a local butcher
shop. Tissue was visually separated into two types: fat and
fibrous tissue. These samples were labeled as pure samples.
In addition, composite samples consisting of fibrous and fat
components were prepared. The cylindrically shaped tissue
samples of 5 mm diameter were fixed in formalin for 4 months.
Following fixation, 4 mm thick samples were prepared.

3.B. Fat estimation technique

The fat estimation technique entails the generation of dig-
ital x-ray images of the tissue samples with an MX-20 digital
specimen radiography system [Faxitron Bioptics (LLC), Tuc-
son, AZ]. It consists of a stationary tungsten anode tube and
a 2×2 in. phosphor screen coupled to a 1×1 in. CCD camera
via a 2:1 fiber optic taper. The focal spot size is 25 µm and
there are 1024×1024 24.8 µm detector pixels. The samples
were imaged at a magnification 2 using 26 kV, 0.3 mA, and
3.8 s exposure times. The entrance exposure per image was
9.2×10−4 C/kg.

The MX-20 was calibrated with polyethylene (polyet) and
polymethyl methacrylate (PMMA) samples each 5 mm in
diameter and thicknesses ranging from 1 to 5 mm. The en-
ergy incident signal (EIS) upon a given pixel of area Apixel
was calculated using

EIS=

j

E jΦ0(E j)Apixele−(µpolyet(E j)dpolyet+µPMMA(E j)dPMMA),

(3)

where the incident photon fluence Φ0(E) shown in Fig. 1(a)
was estimated using a CdTe detector collimated with a 25 µm

diameter tungsten aperture. The µ values were calculated us-
ing cross section data for elements of Plechaty et al.33 and the
mixture rule.34 The CCD detector pixel values are denoted by
ADU to represent analog to digital units. Figure 1(b) shows
the calibration curve fitted with a line of best fit given by

ADUfit(EIS)=m×EIS+b, (4)

where m= (7.72±0.13)×10−3 ADU/keV and b= (−31.3
±34.1) ADU.

The νfat within the 2.7 mm diameter 4 mm thick ROI
was determined as follows. Consider the columns of tissue
defined by the intersections of beamlets and pixels. Within
the ROI there were 9533 columns. Each tissue column of
thickness d was assumed to be composed of a mixture of
fibrous and fat tissue. Let νfat denote the fractional volume of
fat for a particular column. Calculations of

EIS(vfat)=

j=1

E jΦ0(E j)Apixele−(µfib(E j)(1−vfat)+µfat(E j)vfat)d, (5)

as a function of νfat ranging from 0 to 1 were calculated using
the attenuation coefficients µ of breast tissue.31 Figure 1(c)
shows plots of EIS(νfat) versus νfat for samples of thickness
d = 1, 2, 3, 4, and 5 mm. The line corresponding to d = 4 mm
was used in this work to estimate νfat for each column of
tissue. Note that for whatever thickness of biopsy one can
generate the required EIS(νfat) versus νfat curve. The calcu-
lated EIS(νfat) [Eq. (5)] that matched the EIS obtained via the
ADU-EIS calibration [rearrangement of Eq. (4) with ADUfit
replaced with the ADU pixel value] yielded νfat for the col-
umn. The mean value νfat was calculated for the ROI and its
uncertainty was estimated as follows. EIS lower and upper
bounds were calculated, namely

EISlower=EIS−σc, (6)
EISupper=EIS+σc, (7)

per pixel, where

σ2
c =


∂EIS
∂m

2

σ2
m+


∂EIS
∂b

2

σ2
b

+


∂EIS
∂ADU

2

σ2
ADU−2mb Cov(m,b). (8)

F. 1. (a) Φ0 estimated using a CdTe detector (measurement parameters: 26 kV, 30 s exposure, 25 µm diameter aperture, 8320 counts/s, 2.2 s dead time), and
calibration curves (b) ADU versus EIS using PMMA and polyet plastics, and (c) EIS versus νfat for various thicknesses.

Medical Physics, Vol. 41, No. 11, November 2014



113501-4 Tang et al.: Fat estimation in biopsies for WAXS applications 113501-4

The error in ADU units (σADU= 19.9) was taken to be the
mean value of the standard deviations of ROI pixels values
for all plastic samples. From the calibration curve [Fig. 1(c)],
corresponding νfat bounds were extracted per pixel. The
means of the bounds were taken and their differences from
νfat provided an uncertainty range.

Simulations, as described next, were performed to deter-
mine whether νfat is sufficient for the application of the fat
subtraction model.

3.C. Simulations

Consider the 5 mm diameter 4 mm thick sample shown
in Fig. 2(a) which was filled with fib and fat tissue voxels.
The samples were divided into 0.1×0.1×0.1 mm3 voxels of
which 22 400 (560×40) occupied the central ROI (regions 1
and 2). The ROI voxels were filled three different ways: (i) re-
gion 1 consisted of tissue columns with νfib= 0.6/νfat= 0.4,
region 2 with 0.4fib/0.6fat, (ii) region 1: 0.4fib/0.6fat, region
2: 0.6fib/0.4fat, and (iii) tissue columns in the ROI were filled
such that their νfat distribution was a Gaussian (νfat= 0.5,
σ = 0.08).

F. 2. (a) Three sample configurations: (i) region 1 consisted of tissue co-
lumns with νfib = 0.6/νfat = 0.4, region 2 with 0.4fib/0.6fat, (ii) region 1:
0.4fib/0.6fat, region 2: 0.6fib/0.4fat, and (iii) tissue columns in the ROI were
filled such that their νfat distribution was a Gaussian (νfat = 0.5, σ = 0.08).
(b) µsc(fib) signals via applications of the fat subtraction model.

The volume of the ROI consisted of 50% fib and 50%
fat for all cases. The voxels within each column were filled
randomly. For configurations i and ii, the column’s νfat distri-
butions within the ROI were dual peaked, whereas Gaussian
shaped for iii. As shown later in Sec. 4, they were Gaussian
distributions for the tissue samples. The outer regions labeled
as 3 were filled with fib yet filling them with fat gave similar
results. This indicated that the outer region composition need
not be included in the WAXS models.

The scattering was assumed to occur at the center of each
voxel. Only single scatter was considered and statistical noise
was not included in the simulations. The coherent form fac-
tors F used in the calculations were those measured by Po-
letti et al.35 The incoherent scattering functions S were calcu-
lated using S of atoms from Hubbell et al.36 and the sum
rule.37 The compositions used were those from Poletti et al.35

The attenuation coefficients for fib and fat were taken from
Johns and Yaffe.31

The µsc(fib) curves obtained via the subtraction model for
the three sample configurations are shown in Fig. 2(b). The
µs of fib which was sought is also shown. Although there are
small differences between the curves, the subtraction works
regardless of which type of νfat distribution existed. The find-
ings suggest that only νfat is required for the application of
the models and knowing the distributions of νfat within the
ROI of the sample is not necessary.

3.D. µ measurements

The analysis [i.e., Eqs. (1), (2), and (5)] was also done
using µ values measured with the WAXS system in the θ = 0◦

configuration. However, a smaller 25 µm diameter aperture
was used. A two basis function31 method with aluminum and
polycarbonate as bases was used to fit µ versus energy curves
for fat and fibrous tissue. To obtain the curves, a 50 kV spec-
trum was used and the N0 was estimated using a transmission
measurement through a 4 mm thick PMMA sample. For an

Fibrous

F. 3. Comparisons of µ for chicken versus breast (Ref. 31) tissue.

Medical Physics, Vol. 41, No. 11, November 2014
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F. 4. (a) Digital x-ray images, (b) ADU histograms, and (c) ADU maps.

energy range 8–25 keV, singular value decomposition was
used to solve the system.

The results of µ measured (µ-expt) for chicken fat and fi-
brous were compared to those of breast tissue (µ-breast)31 via
the percent differences which are shown in Fig. 3. The

results suggest that µ values of chicken tissue are similar to
those of breast tissue. The differences (e.g., for chicken fat
−5.8% smaller at 19 keV) could be caused by the fact that
the samples were fixed in formalin, whereas those used by
Johns and Yaffe31 were unfixed tissue specimens. The duration

F. 5. µs of tissue (a) fat and (b) fibrous via (i) and (iii) µ-breast and (ii) µ-expt.

Medical Physics, Vol. 41, No. 11, November 2014
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between sample extraction from formalin solution to actual
transmission measurement could cause differences. Values of
µ for beef were measured but deemed unacceptable because
of this duration. The analysis of beef was only done with µ-
breast values. Although optimization of µ measurements will
be needed, the results in Sec. 4 were interesting and encour-
aging.

4. RESULTS AND DISCUSSIONS

Figure 4(a) shows images of (i) a PMMA sample, chicken
samples of (ii) fat, (iii) fibrous, and (iv) fibrous that contains
some fat (chicken composite), and beef (v) fat, (vi) fibrous,
and (vii) composite samples. The dashed white lines in each
image were added to highlight the ROI that corresponds to
a 2.7 mm diameter central region. For the tissue samples,
the corresponding ROI volume was interrogated during the
WAXS measurements. The νfat within the ROI volume was
estimated for the composite samples.

The thickness of tissue at the outer edges varied a lot espe-
cially for the fibrous and the chicken composite samples. With
better tissue preparation, the shape of the samples will look
more like that of the plastic sample. However, it is the µs of the
tissue within the ROI which was sought via WAXS measure-
ments. The material outside the ROI, as mentioned in Sec. 3.C,
was involved only in attenuating a small portion of the scat-
tered photons from reaching the CdTe detector during the
WAXS measurements. The beef fibrous image has some white
streaks suspected to be caused by fat tissue.

Figure 4(b) shows corresponding histograms of the ADU
values within the ROI. Their means and standard deviations
are given in each figure and they were used to plot the Gaus-
sian distributions (dashed lines). These Gaussians approxi-
mate the distributions except for the chicken fibrous sample
[Fig. 4(b)(iii)]. This sample’s ROI thickness deviated from
uniformity. In a future work, a new tissue cutting apparatus
will provide consistent accurate uniform thicknesses for the
samples.

Figure 4(c) shows ADU maps. Pixels are displayed as
gray unless they have an ADU beyond 1 σ of the mean, in
which case as black (<) or white (>). The maps are meant
to highlight any possible features within the ROI that would
appear as clustered regions. The map for PMMA [Fig. 4(c)(i)]
displays a mottle pattern while those of the tissue have mottle
characteristics yet some clustering is seen. The map for beef
fibrous [Fig. 4(c)(vi)] has clusters caused by fat streaks while
the larger clusters occurring for chicken fibrous [Fig. 4(c)(iii)]
were caused by a nonuniform thickness. Although deviations
from purity and thickness uniformity occurred, the WAXS
results shown below for all samples were encouraging.

Figure 5 shows the µs values for tissue (a) fat and (b) fibrous
samples. (i) and (ii) are for chicken tissue using, respectively,
µ-breast and µ-expt while panel (iii) is for beef using µ-breast.
Also shown are µs for breast tissue from Kidane et al.;14 µs

for breast tissue calculated using F data from Poletti et al.,35 S
from Hubbell et al.36 with compositions from Poletti et al.;35

and µs for animal tissue calculated using F data from Peplow
and Verghese,15 S from Hubbell et al.36 with compositions

from ICRU Report 46.38 The 1.1 nm−1 fat peak signal is seen
in the fat samples. These fibrous data are similar to each other
except for the Kidane et al.14 fibroglandular breast tissue. The
µs of chicken obtained using µ-breast were similar to those
obtained with µ-expt.

Figure 6 shows the νfat distributions for the chicken and
beef composites. The ROIs’ νfat distributions were well ap-
proximated by Gaussians (dashed lines) obtained using the
νfat and σs (see figure) of each distribution. The FWHMs are
indicated via the arrows. For the chicken composite, νfat= 0.4
±0.05 via use of µ-breast, 0.33±0.05 using µ-expt, and
0.32±0.05 for the beef composite using µ-breast.

Figure 7 shows that µs values for the composites match well
with µ


s . The root mean square deviations ∆rms between them

are also shown. The results for chicken were slightly better
when µ-expt were used. Figure 8 shows that µsc(fib) obtained
via the fat subtraction model matched closely the µs(fib) ob-
tained with a pure fibrous sample. Again for chicken, better re-
sults (i.e., smaller ∆rms) were obtained using µ-expt. Although
the results for beef with µ-expt were poor (not shown), the re-
sults obtained using µ-breast were satisfactory. The differences
µs− µ


s and µsc(fib)− µs(fib) were computed and their mean

values were compared to 0 via t-tests. The null hypothesis was
retained for all samples verifying that the mean of differences

F. 6. νfat distributions of the chicken composite via (a) µ-breast and (b)
µ-expt, and of the (c) beef composite via µ-breast.
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F. 7. µs of the chicken composite via (a) µ-breast and (b) µ-expt, and of
(c) the beef composite via µ-breast.

did not vary from the expected mean of 0 in a statistically signif-
icant way. The ∆rms and t-test were two ways of comparing the
distributions, yet a more quantitative measure will be devel-
oped. The findings validate the use of the technique for esti-
mating νfat for the applications of the WAXS models.

5. FUTURE WORK

The next phase to the research program is to refine the fat
estimation and subtraction protocol. The selection of only two
tissue types fat and fibrous was sufficient to demonstrate the
usefulness of the methods, however, the reproducibility of our
measurements need to be verified. The measurements of µ and
the sample preparation (especially its thickness) will be opti-
mized since they need to be known accurately for Eq. (5). The
elapsed time between tissue extraction from formalin and µ
measurement needs to be maintained consistent for all sam-
ples. The purity of our baseline pure samples will be quantified
via combined µ and image analysis. Namely, µ values deter-
mined for a 25 µm diameter column of the tissue sample will be

F. 8. µsc of fibrous tissue via the fat subtraction model applied to the chi-
cken composite using (a) µ-breast, (b) µ-expt, and to (c) the beef composite
using µ-breast.

measured. The sample will then be imaged and its fat content
will be estimated using the measured µ. For a pure sample of
fat, νfat should be equal to 1, whereas νfat= 0 for a pure fibrous
sample. Measurements at 2◦ and 12◦with a higher 80 kV beam
will allow a larger region of momentum transfer to be probed.
Uncertainties will be reduced with a higher kV beam and with
a beam stopper to reduce air scatter (≈15%). The effects caused
by the CdTe detector response will need to be assessed for the
higher kV analysis.39

Since the scatter signals from the amorphous samples are
circularly symmetric, a detector matrix of CZT pixels40 would
allow a larger portion of the scattered field to be captured there-
by reducing the uncertainty. However, at this time, such a de-
tector is not available to the research program.

6. CONCLUSIONS

The methodology to estimate νfat within a ROI of a tissue
sample for use in a WAXS fat subtraction model was shown
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to be quantitatively accurate. Optimizations of this proce-
dure are under way and the analysis of breast biopsies will
commence shortly.
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