
Earth Sciences
Program Faculty
Découvrez le potentiel de notre planète et préparez-vous à devenir géoscientifique professionnel agréé (P.Geo.).

Survol du programme
Faites de la Terre l’œuvre de votre vie
Remarque: Ce programme est offert uniquement en anglais. Pour en savoir plus sur ce programme, veuillez consulter la version anglaise de cette page.
Étudier les sciences de la Terre à la Laurentienne ouvre un monde de possibilités.
Dans ce programme, vous acquerrez des connaissances et une expérience pratique vous préparant à de nombreuses carrières en géosciences. Dans le but de faire progresser la civilisation, les géoscientifiques identifient, localisent, recherchent, comprennent et développent les ressources naturelles, notamment les minéraux, les métaux, les sources d’énergie, les sols fertiles et l’eau.
Suivez des cours de géologie, de minéralogie, de pétrologie et bien d’autres matières aussi. Vous obtiendrez plus de 700 heures d’expérience pratique en vous servant de microscopes de haute technologie et d’autres équipements spécialisés dans les laboratoires et les écoles de terrain. Vous aurez également l’occasion d’acquérir une précieuse expérience de travail pendant l’été auprès de divers organismes de l’industrie minière, d’agences gouvernementales et de centres de recherche, grâce à notre emplacement dans l’un des districts miniers les plus grands et les plus connus au monde.
De plus, vous profiterez de vivre et d’étudier à Sudbury, en Ontario, un centre mondial d’exploration et d’exploitation minière reconnu pour ses réussites en matière de restauration environnementale depuis 50 ans.
Après l’obtention de votre diplôme, vous aurez les connaissances exigées pour devenir géoscientifique professionnel (P.Geo.) auprès de Professional Geoscientists Ontario (PGO) ou tout autre organisme de réglementation au Canada.
Vous pourrez également poursuivre vos études dans le programme de Master of Geology afin d’envisager des carrières spécialisées et des possibilités de recherche en géosciences, y compris en géologie, paléontologie, minéralogie, etc.
Profitez de classes à effectif optimal et d’un milieu d’apprentissage ouvert où vous pourrez en apprendre davantage sur les processus géologiques utilisant des roches et fossiles anciens et récents du monde entier.
Acquérez une expérience essentielle en cartographie, géologie et identification de minerais. Nos diplômés sont reconnus pour leurs compétences exceptionnelles en identification de roches et de minéraux, ainsi qu’en cartographie de terrain.
Prenez votre essor sur les plans universitaire et personnel. Établissez des liens étroits avec des professionnels de l’industrie, vos professeurs et vos camarades de classe lors d’écoles de terrain régionales et de voyages à l’étranger.
Perspectives de carrière
Faites évoluer une carrière enrichissante en géologie tout au long de votre vie dans le domaine de l’exploration minérale, l’industrie minière, auprès du gouvernement ou de sociétés d’experts-conseils. Une multitude de choix de carrière se présentent aux diplômés, y compris, entre autres, à titre de :
- Géologue
- Géochimiste
- Géophysicien
- Géoscientifique de l’environnement
- Gestionnaire/directeur de l’exploration
- Cadre dirigeant dans le secteur minier et de l’environnement (VP, PDG)
- Gestionnaire du développement durable
- Technicien géologue
- Spécialiste de la gestion des données
- Géologue/analyste d’enquête ou de SIG
- Analyste/technicien géospatial
- Éducateur en sciences de la Terre et durabilité
- Agent/gestionnaire de la protection de l’environnement
- Gestionnaire/directeur des relations communautaires
- Gestionnaire ou acheteur de produits
- Analyste en finance/commerce
- Gestionnaire/directeur de laboratoire
- Arpenteur
- Analyste des politiques
- Chercheur
- Prospecteur
Beaucoup de ces carrières sont dans les secteurs public et privé.

J’ai choisi le programme des sciences de la Terre de l’Université Laurentienne en raison de sa solide réputation. Puisque mon père travaille dans le secteur minier, je connaissais déjà l’exploration minérale et souhaitais approfondir mes connaissances en géologie.
Après mes deux premiers trimestres dans le programme, j’ai passé un été à travailler en géosciences au sein d’une équipe étudiant un site potentiel de stockage de déchets nucléaires. Grâce au forage et aux tests, ainsi qu’à une analyse géophysique et géochimique approfondie, notre projet visait à recueillir des échantillons de carottes de forage pour vérifier si le site était convenable pour l’entreposage de déchets nucléaires. C’était un travail fascinant, car les décisions que nous prenons aujourd’hui auront une incidence sur la planète pour les générations à venir. J’ai également travaillé deux étés dans le nord-ouest de l’Ontario pour de petites compagnies minières (et tout cela pendant le premier cycle!).
Tout au long du programme, j’ai noué des liens à l’Université et lors d’activités de réseautage, obtenu des bourses d’études et acquis chaque été de l’expérience de travail dans l’industrie. Maintenant que j’ai mon diplôme, je poursuis le titre professionnel de GIT (géologue en formation), prends les démarches pour obtenir mon P.Geo. et suis enthousiasmée par tout ce que réserve l’avenir.
Andrea Demers
Détails du programme
Langue du programme:
Français
Mode de présentation:
Sur campus
Coordonnées
Pedro Jugo, PhD(705) 675-1151 poste 2106
B-5005, Willet Green Miller Centre
PJugo@laurentian.ca
Veuillez écrire à l’adresse courriel ci-dessus et notre équipe de recrutement vous répondra!
Exigences d’admission
Pour en savoir plus sur les conditions d'admission au programme, veuillez consultez la section « Admission Requirements » sur la version anglaise de cette page.
Comment déposer une demande
Candidats canadiens
Si vous êtes citoyen canadien ou résident permanent, vous devez déposer votre candidature auprès du Centre de demande d'admission aux universités de l'Ontario (CDAUO).
Pour obtenir des instructions détaillées sur le processus de demande d'admission, veuillez consulter la page Comment déposer une demande: Candidats canadiens de premier cycle.
Candidats internationaux
Si vous êtes un candidat international, vous devez remplir le formulaire de candidature international.
Pour obtenir des instructions détaillées sur le processus de demande d'admission, veuillez consulter la page Comment déposer une demande: Candidats canadiens de premier cycle.
Options de diplôme
Pour avoir une description des différents programmes, voir l'onglet "Degree Options" en anglais.
Exemples de cours
Pour voir les cours offerts par ce programme, veuillez consulter la section « Courses » sur la version anglaise de cette page.
Le cours est divisé en deux parties. La première partie étudie des concepts fondamentaux, tels que la façon dont la Terre s'est formée, comment les éléments chimiques se combinent pour former des minéraux, comment les roches se forment par la suite à partir de minéraux, la déformation des roches, la tectonique des plaques, et les ères géologiques. La deuxième partie se concentre principalement sur les catastrophes naturelles causées par les tremblements de terre, tsunamis, et éruptions volcaniques, ainsi que sur des notions fondamentales sur l'origine et la distribution des ressources métallifères et pétrolières et les aspects environnementaux reliés à l'exploitation de ces ressources. (3 h, 3 labo.) 3 cr. On ne peut pas obtenir de crédits à la fois pour GEOL 1006 et GEOL 1021.
This course builds on concepts introduced in GEOL 1006 E and serves as an introduction to the methods used in reconstructing the geologic history of the Earth and its regions. Topics include the geologic time scale; dating methods; life, fossils & evolution; sedimentary environments; introduction to stratigraphy & correlation; an overview of major events in Earth history. Laboratory sessions provide an introduction to relative dating, fossils, sedimentary rocks, stratigraphy and geologic maps. PREREQ: GEOL 1006 E. (lec 3, lab 3) cr 3. Students may not retain credit for both GEOL 1007 and GEOL 1022.
Au moyen d'applications, le cours présente un traitement soutenu du calcul différentiel ainsi qu'une initiation au calcul intégral. Il examine les matières suivantes : limites, continuité et dérivées des fonctions, fonctions de base, approximation par les polynômes de Taylor, formes indéterminées et règles de l'Hôpital, applications pratiques, sommation, intégration, techniques d'intégration, l'aire d'une région et volumes. Préalable : cours de 12e 4U en Fonctions avancées (minimum 60 %) ou MATH 1912 ou l'équivalent. (3 h, 1 tr.d.) 3 cr.
Cours d'initiation aux principes fondamentaux de la chimie. Contenu du cours : la structure électronique des atomes et des molécules, la chimie nucléaire, la stoéchiométrie, le tableau périodique et la périodicité chimique, et les propriétés des solutions. Préalable : un cours de chimie (12e 4U) ou CHMI 1041 ou la permission du département. (3 h, 2 labo, 1 tr.d.) 3 cr.
Ce cours est la deuxième partie du cours d'initiation aux principes fondamentaux de la chimie. Contenu du cours : thermochimie, thermodynamique chimique, cinétique chimique, équilibre chimique, équilibre acide-base, solutions tampons, électrochimie et initiation aux principes de la chimie organique. Préalable : CHMI 1006 ou 1041 (min. 80 %). (3 h, 1 tr.d., 3 labo.) 3 cr.
Ce cours est le premier de deux cours d'initiation à la physique. Ce cours couvre la mécanique (dynamique et cinématique), les vecteurs et l'énergie, les propriétés de la matière, la chaleur et la thermodynamique, et les ondes. Tout le long du cours, des exemples seront tirés des sciences physiques et de la vie (3 h, 1 tut, 3 labo) 3 cr. On ne peut obtenir de crédits à la fois pour PHYS 1206 et PHYS 1006.
Ce cours est le deuxième de deux cours d'initiation à la physique. Ce cours couvre l'optique géométrique, l'électricité et le magnétisme, et la physique moderne. Tout le long du cours, des exemples seront tirés des sciences physiques et des sciences de la vie. Préalable: PHYS 1006 ou l'équivalent. (3 h, 1 tut, 3 labo) 3 cr.
This course introduces students to the science of field geology. In the 5 weekdays prior to the start of the fall term, students will visit a variety of geological settings in the field where students will be introduced to and learn safety in the field, basic geological observation and data recording, and basic mapping techniques both in plan and section. At each area students will undertake small (outcrop) scale mapping projects. During the fall academic term students will attend seven field trips (Friday afternoons from mid September to late October) led by faculty to examine and document specific geological environments. The final section of the course will be devoted to classroom map exercises (three point, apparent dip, strata thickness and orientation, geological cross sections - 3 hours per week). PREREQ: GEOL 1006 and GEOL 1007. cr 3.
This course provides an introduction to the crystallography of minerals emphasizing external morphology: symmetry elements, crystallographic axes, crystal systems, Miller indices, simple stereograms and crystal classes. Topics include the physical and chemical properties of minerals and how these properties are related to internal structure; packing of atoms, radius ratios and atomic coordination; derivation of chemical formulae from chemical analyses; atomic bonds and their relationship to mineral composition and structure; and unary and binary phase diagrams. The course involves systematic discussion of crystal chemistry and occurrence of main mineral groups. Laboratory work involves hand specimen examination of major mineral groups identification using crystallographic, physical and chemical properties. PREREQ: GEOL 1006/7. (lec 3, lab 3) cr 3.
This course provides an introduction to the theory and methods of optical crystallography as it relates to the passage of light through isotropic and anisotropic minerals. Laboratory periods emphasize the application of theory to the identification of minerals in thin section using a polarizing microscope. This course includes an introduction to the optical mineralogy of the most important minerals in common igneous, metamorphic and sedimentary rocks. PREREQ or COREQ: PHYS 1007. PREREQ: GEOL 2126. (lec 3, lab 3) cr 3.
This course examines the classification and recognition of sedimentary, igneous and metamorphic rocks, the nature of their occurrence and processes responsible for their formation. A third of the course is devoted to each of the three major lithotypes. Laboratory exercises and field-oriented assignments will focus on hand specimen material, emphasizing common mineral associations, structures and textures. PREREQ: GEOL 1006 E or GEOL 1007 E or equivalent. (lec 3, lab 3) cr 3. Students may not retain credit for both GEOL 2237 and GEOL 2017.
This course presents a broad overview of the history of life on earth over the past four billion years, outlining the importance of biological input into the making of planet Earth. Topics include the use of fossils as keys to geological time, evolution and ancient environments; the origins of life, development of the atmosphere and oceans and evolution of marine and terrestrial ecosystems in the light of plate tectonics; and morphology, paleoecology and evolution of important fossil groups, starting with bacteria, algae, vascular plants, and ending with protochordate invertebrates. Laboratory sessions deal with stromatolites, calcareous algae, vascular plants, microfossils and invertebrates (sponges, corals, bryozoans: remaining labs covered in GEOL 2407). Annual fall field trip to Manitoulin Island. Suitable for students of biology, geography or anthropology. (lec 3, lab 3) cr 3.
This course introduces the geochemistry and minerology of the Earth's crust, the chemical processes that take place at the Earth's surface, and the geochemistry of both low- and high-temperature systems. Topics include geochemical variations from core to crust, Goldschmidt's classification of the elements, the laws of thermodynamics, solution geochemistry, salts and their ions, weathering and mineral stability diagrams including carbonates, sulfates and silicates, electrochemistry and Eh-pH diagrams, soil formation, quantitative calculation of elemental variations during mineral and rock weathering, stable isotopes and their application to paleoclimatology and near-surface earth processes, radiogenic isotopes and their application in geology, and major and trace element geochemistry. PREREQ: GEOL 1007, GEOL 2126, and CHMI 1006/1007. (lec 3, lab 3) cr 3. Students may not retain credit for GEOL 3806 and GEOL 2807.
Le cours traite les sujets suivants : approche intuitive des probabilités et statistique descriptive, notions de base en probabilité et variables aléatoires discrètes (distribution hypergéométrique, Bernouilli et binomiale), variables aléatoires continues (densité uniforme, gamma et normale), théorème central limite, estimation ponctuelle, test d'hypothèses (sur les proportions, moyennes, variances, tableaux de contingence et la régression/corrélation). Préalable : MATH 1036. (3 h, 1 tr.d.) 3 cr. On ne peut obtenir de crédits que pour l'un des cours suivants STAT 2246, STAT 2166, STAT 2066, MATH 2246, MATH 2236, MATH 2261, ou ENGR 2017.
This course covers the nature and geological origin of important non-renewable resources in the Earth's crust with special reference to Canadian occurrences of metals, fossil fuels, phosphates and evaporites. This course is directed towards non-science students and is not available for credit in the B.Sc. in Geology. PREREQ: GEOL 1021/1022 E or equivalent, or permission from the instructor. (lec 3) cr 3.
This course focuses on several major topics: the geoscience of natural hazards, hazard prediction and human vulnerability, preparedness, mitigation and recovery from natural hazards and aims to build a foundation for critically evaluating how humans live with hazard risk, from a technical and societal point of view. This course is intended for those who wish to better understand natural hazards and to assess how the consequences of natural hazards are minimized. Prerequisites: 18 university credits. Lec. (credits 3).
This course addresses the physical properties of natural or anthropogenic materials in the subsurface. A number of geophysical methods will be introduced that are capable of identifying where these physical properties are anomalous. The course will provide examples from environmental science, forensic science and archaeology, including how to find sites containing potable groundwater, contaminants, hazards, ancient human workings, and illicit burials. (lec 3, lab 3) cr 3. Prerequisites: Six credits in first-year science courses, PHYS 1006 or 1206 are recommended.
This course explores the topic of gemology at an introductory-level, with a focus on precious and semi-precious gems along with precious metals. Topics to be covered include: physical and optical properties, geological origin, mineralogical features, methods used to process and treat them and their historical significance. The social and environmental impacts of the gem trade will also be discussed. PREREQ: 18 university credits or permission of the instructor (Lec 3) cr 3.
This course requires students to create one or more geological maps and a geological report that presents the geological framework for the mapping project(s) and explains the field observations. Structural mapping of polydeformed rocks will be emphasized. Field supervision for the course is normally offered during the first two weeks of May for students finishing their third year of study in an Earth Sciences program. Final maps and reports are due on the last day of the field school. This course will provide students with general skills in: 1) orientation and map reading; 2) use of GPS and air photography; 3) traverse and mapping techniques; 4) field structural analysis; and 5) technical report writing. NOTE: The course is typically held during the last week of April and first week of May PREREQ: GEOL 2006, 2126, 2237 cr 3.
This course provides an introduction to the physical, chemical, mineralogical, and petrographic characteristics of igneous rocks. At the end of this course, students will have a broad understanding of the processes involved in magma generation, differentiation and crystallization. They will also learn about the abundance and distribution of various types of igneous rocks and how they relate to planetary evolution and plate tectonics. Phase diagrams will be used to explain how minerals change composition as magmas cool and solidify and also to explain how magmas are generated by partial melting of crystalline assemblages. The role of volatiles in melting processes, volcanic eruptions and volcanic degassing will be discussed. The standard schemes of rock classification will be explained and applied. The laboratory component requires good understanding of optical mineralogy and involves detailed observation and description of a variety of igneous rocks. PREREQ: GEOL 2127 and GEOL 2237. (lec 3, lab 3) cr 3.
This course examines the description, classification and interpretation of metamorphic rocks using hand-sample, microscopic, graphical and numerical techniques. Metamorphic processes and environments of metamorphism are discussed (contact, regional and hydrothermal metamorphism; metamorphic facies and zones). Students are introduced to the use of phase diagrams, thermodynamics and phase equilibria techniques to constrain the conditions of formation of mineral + fluid assemblages. Geochronology and thermal modeling techniques are introduced. Laboratories present samples and suites of material illustrating metamorphic textures and mineralogy used to infer metamorphic reaction history and the pressure and temperature conditions of metamorphism. PREREQ: GEOL 2127 and GEOL 2237. (lec 3, lab 3) cr 3.
This course covers the transport and deposition of sedimentary particles, terrigenous clastic and carbonate depositional environments, sedimentary structures, lithofacies, and petrography, stratigraphic methods, and sedimentary basins. PREREQ: GEOL 2237, 2406. (lec 3, lab 3) cr 3.
The course examines the formation of tectonic structures in rocks. It begins with an introduction to strain and stress. This is followed by an examination of brittle structures, such as faults, cataclasites, fractures and veins, in terms of classification, recognition and modes of origin. During the second half of the course, the development of shear zones, foliations, lineations and folds is discussed with an emphasis on the interrelationships between these structures. Rock flow equations, shear sense indicators in fault zones, and grain-scale plastic deformation processes are other topics covered in the course. Laboratory work comprises: stress and strain exercises, stereographic projections, solution of 3D structural problems by descriptive geometry and stereographic projections, map interpretation of deformed areas, and interpretation of the attitude of deformed orebodies from drill hole data. PREREQ: GEOL 1006/7, 2006, and 2237. (lec 3, lab 3) cr 3.
This course presents an introduction to the nature, morphology, geologic setting and classification of the principal types of ore deposits and theories about their genesis. It includes a description of significant Canadian deposits and their geological and tectonic environment as well as notable deposits elsewhere in the world. Emphasis is placed on shield deposits and metallogeny, and attention is given to mineral economics, mining and metallurgical techniques, and relevant environmental issues. Laboratories introduce students to techniques used to understand ore deposits (microscopy, microprobe analysis, study of fluid inclusions and stable isotopes) and focus on specific deposits and their host rocks. PREREQ: GEOL 2127 and GEOL 2237. (lec 3, lab 3) cr 3. Students may not retain credit for both GEOL 3607 and GEOL 4606.
This course provides a quantitative treatment of thermodynamics, major element, trace element, stable isotope, and radiogenic isotope geochemistry and their applications to Earth processes at high temperatures. Topics include thermodynamics and using thermodynamic databases, equations of state, multicomponent fluids at high temperatures, solution models, phase diagrams, applications of chemical thermodynamics in petrology, applications of major elements in understanding igneous and hydrothermal processes, trace element classification and partitioning, and applications of trace element geochemistry to understanding igneous, sedimentary and hydrothermal processes. The use of radiogenic isotopes in geochronology, petrology and mineral deposits, and the use of stable isotopes in petrology and mineral deposits are discussed. PREREQ: GEOL 2807 and MATH 1036. (lec 3, lab 3) cr 3.
This course deals with the use of computer software packages aimed at compiling geological and environmental earth science field data and producing maps and diagrams of high quality. Depending on student need, these may include ArcGIS, AutoCAD, MapInfo, CorelDraw, gOcad, and Fieldlog, as well as other programs as they become available. Methods of calibrating digitized maps to geographic coordinates and exporting to other programs for final editing will be pursued. PREREQ: Must be enrolled in the four-year Geology or Environmental Earth Science program. lec 3, lab 3) cr 3.
This course introduces the formation and classification of soils, including their physical, chemical and biological properties. It also considers environmental issues involving soil. PREREQ: CHMI 1041 or grade 12 4U chemistry and GEOL 1007 or permission of the department. (lec 3, lab 3) cr 3. Crosslisted as BIOL 3397. Students may not retain credit for both GEOL 3397 and BIOL 3397.
Topics include origin of the ocean-atmosphere system; ocean basins and plate tectonic processes; marine geology, hot spots, and deep sea vents; ocean salinity, density, gases, thermal properties, heat budgets, and circulation; marine provinces; oceanic ridges, rises and trenches; life in the oceans; evolution of marine communities and marine extinctions; sediment distribution; current systems; ocean resources and their exploitation; and environmental concerns. PREREQ: GEOL 1006 or GEOL 1021; GEOL 1007 or GEOL 1022.
This course covers the physics of the Earth and how geophysical methods (magnetic, gravitational and seismological) can be used to infer the structure of the Earth's core, mantle and crust. It presents the contributions of geophysics to the development of plate tectonic models for ancient and modern Earth. PREREQ: GEOL 1006/1007; PHYS 1006/1007; MATH 1036 or 1912. (lec 3, tut 3) cr 3.
This synthesis course provides an integrated overview of tectonic environments and geodynamic processes and their roles in petrogenesis and metallogenesis. The course will integrate knowledge from the petrogenesis and metallogenesis of divergent margins, convergent margins, passive margins, and large igneous provinces. The course will also consider how petrogenetic processes and structural styles have varied in orogens representing a variety of crustal levels through Earth history. PREREQ: GEOL 3206, 3207, 3217, 3306, 3607, 3807. (lec 3) cr 3. Students may not retain credit for both GEOL 4506 and GEOL 4505.
This course introduces the geology of Precambrian regions around the world with a special emphasis on the Precambrian Shield of Canada. Topics covered include evolution of the Canadian Precambrian and its position in the continental framework; orogenic provinces; lithology, structure, metamorphism and composition; mineral deposits and metallogenic provinces of the Shield; and the Precambrian Craton and its role during subsequent eras along with problems and current research in Precambrian geology. The course includes a field trip to the Temagami Volcanic Belt, Cobalt-Haileybury region, Timmins, Noranda or Kirkland Lake regions. PREREQ: GEOL 3206/3207 and GEOL 3306 (lec 3, sem 2) cr 3. Students may not retain credit for both GEOL 4016 and GEOL 4505.
This course shows how geological and ore-forming problems can be solved by integrating detailed mapping with geochemical and petrographic analysis. Students create one or more geological maps and measured stratigraphic/structural sections in three areas: Noranda, Timmins and Sudbury. These areas illustrate different geological and ore-forming environments and the map areas are selected to illustrate particular geological problems. The 10-day field component begins one week prior to the fall session for students entering the 4th year of an Earth Science program. Subsequent laboratory analysis includes examination of samples, whole rock and trace element geochemical data, and thin sections representative of rock types, alteration and mineralization in each map area. Students produce final maps and a comprehensive geological report summarizing each of the map areas, including interpretations derived from geochemical and petrographic data. Students cover all extra costs associated with this course. PREREQ: completion of required 3rd-year GEOL courses and enrolment in the 4-year Earth Sciences program, or instructor's permission. (exp) cr 3.
An applied course designed to provide students with detailed information on specific minerals and mineral groups along with the analytical techniques used to identify and characterize them. Mineralogical topics to be discussed may include mineralogy of massive sulphide ore deposits (Fe-Ni-Cu sulfides), phase equilibria of the Fe-Ni-Cu-PGE ternary, Fe-Ti oxides, alteration minerals (chlorite, amphiboles, white micas) and application of their distribution to ore deposit exploration, the distribution, occurrence and synthesis of platinum-group minerals, classification of clay phyllosilicates, crystal chemistry and classification of zeolites, adsorptive and ion exchange properties of clays, mineralogy of orchre and laterite deposits, and alteration of primary Fe-Ni-Cu sulfides. Analytical topics to be discussed may include powder and single-crystal X-ray diffraction, Rietveld analysis of X-ray data, electron-microbeam techniques (scanning electron miscroscopy, wavelength- and energy-dispersive spectrometry), FTIR/Raman spectroscopy, and ICP-MS techniques. Students considering this course are strongly recommended to discuss the course content with the appropriate instructor prior to registration. PREREQ: GEOL 2126 and GEOL 3807. (lec 3, lab 3) cr 3.
This course examines advanced and unconventional topics related to igneous processes. The origin of the elements in the universe and the solar system is used as the starting point to the understanding of the composition of the Earth and the distribution of trace elements in it. The processes of core-mantle differentiation and the structure and mineralogy of the Earth's mantle will be used as a framework to understand the distribution and composition of mantle reservoirs and how they affect the chemical and isotopic composition of major magmas types. The genesis of exotic and rare magmas such as komatites, carbonatites and kimberlites is explored in detail. In addition, students are required to read, discuss and evaluate current and seminal papers. This will expose them to new developments in the field and will enhance their critical thinking skills. The laboratory component includes problem sets that use mineralogical, geochemical and thermodynamic data to determine intensive parameters such as pressure and temperature of crystallization of igneous rocks. PREREQ: GEOL 3206. (lec 3, sem) cr 3.
The course studies the combined metamorphic and structural changes in rocks during orogenesis. The aim of the course is to integrate concepts learned in third year metamorphic and structural courses to better understand the transformation in the structure, texture and mineralogy of rocks after depositions. During the first half of the course, students will be introduced to the concept of vorticity during rock flow, the development of structures in high strain zones of monoclinic and triclinic symmetry, the interpretation of textural relationships between microstructures and metamorphic minerals, and the analysis of porphyroblast-matrix relations. During the second half of the course, students will learn how to analyze the metamorphic and deformation history of rocks, construct petrogenetic grids, calculate metamorphic temperatures and pressures using experimental and thermodynamic data, and interpret pressure-temperature-deformation-time paths. Laboratory work will include petrographic case studies of deformed and metamorphosed suites of rocks from different tectonic environments and a field project within the Sudbury area. PREREQ: GEOL 3207 and GEOL 3306. (lec 3, lab 3) cr 3.
This course examines processes involved in the genesis of magmatic and hydrothermal ore deposits. Emphasis is placed on Ni-Cu-PGE and chromite deposits, the role of sulphur in silicate melts, and contamination and magma mixing. In considering hydrothermal deposits, topics include the types of hydrothermal fluids involved in mineralizing processes; sulphur and chloride species; and the solubility of metals, and alteration and hydrogen metasomatism including techniques to assess chemical gains and losses. Attention is given to porphyry copper, volcanogenic massive sulphides, epithermal and lode-Au deposits. Laboratories involve examination of selected sample suites, problem sets and a project. PREREQ: GEOL 3206/7 and GEOL 3607. (lec 3, lab 3) cr 3.
This course examines the origin, characteristics, meaning, and economic potential of carbonate sedimentary rocks, with emphasis on identification and significance of rock components, lithofacies analysis, interpretation of carbonate depositional environments and systems, diagenetic processes and products, carbonate stratigraphy and correlation, and sequence stratigraphic analysis. PREREQ: GEOL 2406 and GEOL 3217. (lec 3, lab 3) cr 3.
The topics of this course include continental and alpine glaciation, erosional and depositional facies and dynamic processes, glacial climates and their origin, ancient glaciations (Huronian, late Precambrian, Ordovician, late Paleozoic), glacio-marine environments, glaciations and floral-faunal changes, extinctions, and coeval low latitude environments. Laboratories deal with glacial geomorphology, sediments, and principles of correlation. Local field trips examine gravel deposit, glacial varvites (clays) and soils. PREREQ: GEOL 3217 or permission of instructor. (lec 3, lab 3) cr 3.
This course provides an overview of geophysical exploration methods, including gravity, magnetic, electrical, induced polarization, electromagnetic, seismic, gamma-ray spectrometric and down-hole logging methods. The course provides examples from mineral exploration and discusses approaches to the interpretation of geophysical data. PREREQ: Completion of 60 university credits which include GEOL 1006/1007; PHYS 1006 /1007; MATH 1036 or 1912. (lec 3, lab 3) cr 3.
This course is a thesis requiring independent research and the guidance of one or more faculty members. The subject is chosen by the student in consultation with the course coordinator and the supervising professor. Students are encouraged to obtain permission of their employer to use material gathered during the summer as a basis for the thesis. The thesis is defended orally and a final draft, suitable for defence, is normally submitted at least two weeks before the end of classes of the second term. PREREQ: minimum 70% average on required courses or permission of the chair. (sem, exp) cr 6.
This course includes lectures, seminars and projects covering the application of remote sensing to geological, land cover and water quality mapping. Projects are chosen from within these fields where data sets are available and are structured to address issues specific to the particular application, as well as general remote sensing issues such as atmospheric correction, statistical vs. biophysical modelling approaches, and multi data-type integration. PREREQ: GEOG 3037, a statistics course, and GEOL 1007, or permission of the department. (lec 3, lab 3) cr 3.
This course presents an introduction to hydrogeology covering hydrogeologic properties of porous media, flow nets, groundwater resource evaluation, groundwater chemistry, geology of groundwater occurrence, groundwater and the hydrologic cycle, and groundwater contamination. PREREQ: GEOL 1006/7, CHMI 1006/7 and MATH 1912 or 1036. (lec 3, lab 3) cr 3.
This course examines the long-term record of global change as reflected in sedimentary rocks, fossil faunas and floras, and low temperature isotope geochemistry. Topics include major changes in biogeochemical cycling processes through geologic time; lithosphere-ocean-atmosphere interactions; sedimentary suites and fossils as paleoclimatic keys; sedimentary processes related to global change; plate tectonic and mountain building as forcing mechanisms for climatic change; and extraterrestrial forcing. (lec 3) cr 3. Designed for senior-level students.
This course covers the principles of seismology, body and surface wave propagation, attenuation, resolution, elastic properties of rocks; equipment and procedures for acquisition and processing of reflection, refraction, surface wave and VSP data; procedures for interpretation of data so as to extract earth models, including velocity and depth information and sequence stratigraphy. The course will include case histories of seismic methods for resolving subsurface features. PREREQ: 30 university credits, which include MATH 1036, 1037; PHYS 1006. Recommended MATH 2037. (lec 3, lab 3) cr 3
Membres du corps professoral
Prêt(e) à passer à la prochaine étape?
Nous sommes là pour vous aider à commencer votre parcours à Laurentienne.
